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Abstract 

 Genomic phylogeography plays an important role in describing evolutionary processes and 

their geographic, ecological, or cultural drivers. These drivers are often poorly understood in 

marine environments, which have fewer obvious barriers to mixing than terrestrial environments. 

Taxonomic uncertainty of some taxa (e.g. cetaceans), due to the difficulty in obtaining 

morphological data, can hamper our understanding of these processes. One such taxon, the short-

finned pilot whale, is recognized as a single global species but includes at least two distinct 

morphological forms described from stranding and drive hunting in Japan, the ‘Naisa’ and ‘Shiho’ 

forms. Using samples (n = 735) collected throughout their global range, we examine 

phylogeographic patterns of divergence by comparing mitogenomes and nuclear SNP loci. Our 

results suggest three types within the species: an Atlantic Ocean type, a western/central Pacific 

and Indian Ocean (Naisa) type, and an eastern Pacific Ocean and northern Japan (Shiho) type. 

mtDNA control region differentiation indicates these three types form two subspecies, separated 

by the East Pacific Barrier: Shiho short-finned pilot whale, in the eastern Pacific Ocean and 

northern Japan, and Naisa short-finned pilot whale, throughout the remainder of the species’ 

distribution. Our data further indicate two diverging populations within the Naisa subspecies, in 

the Atlantic Ocean and western/central Pacific and Indian Oceans, separated by the Benguela 

Barrier off South Africa. This study reveals a process of divergence and speciation within a 

globally-distributed, mobile marine predator, and indicates the importance of the East Pacific 

Barrier to this evolutionary process. 

 
Keywords: Phylogeography, taxonomy, population structure, Globicephala macrorhynchus, 
cetacean 
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Introduction 

Genomic phylogeography is the modern continuation of classic taxonomic disciplines, and 

as such has an important role in the description of evolutionary processes such as isolation, 

selection, and speciation (Bowen et al., 2016). Marine phylogeography attempts to evaluate these 

processes in an environment with few obvious barriers and many widely distributed species, some 

with large home ranges and long migratory routes. However, meta-analyses of phylogeography 

across several marine taxa reveal some common, large-scale barriers between what may be 

considered biogeographic provinces. These include the Isthmus of Panama, separating the Pacific 

and Atlantic Oceans; the East Pacific Barrier, which refers to the large, oligotrophic, deep open 

ocean that limits the dispersal of many tropical species between the eastern Pacific Ocean and the 

central/western Pacific Ocean; the Indo-Pacific Barrier (the Indo-Malay Archipelago), separating 

the western Pacific and Indian Oceans; the Benguela Barrier, separating the Indian and Atlantic 

Oceans; and the equatorial tropics, separating temperate species in the northern and southern 

hemispheres (Bowen et al., 2016; Davies, 1963; Gaither, Bowen, Rocha, & Briggs, 2016; Lessios, 

2008; Perrin, 2007). 

These barriers often cause genetic divergence that gives rise to populations, subspecies, or 

species. However, taxonomic under-classification can limit our understanding of evolutionary 

processes such as isolation and divergence, inhibit our understanding of the ecological drivers of 

species evolution, and undermine conservation efforts (Bowen et al., 2016; Taylor, Archer, et al., 

2017; Taylor, Perrin, et al., 2017). Taxonomic species delineation based on morphological 

characteristics sometimes overlooks the existence of cryptic species, subspecies, or evolutionarily 

important population structure (Rosel et al., 2017; Taylor, Perrin, et al., 2017). Recent advances in 
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genomic techniques allow researchers to describe species’ taxonomy and population structure with 

higher resolution than was previously possible (Cammen et al., 2016), oftentimes revealing cryptic 

speciation in the absence of physical barriers to dispersal, driven by local adaptation and/or social 

behavior (Leslie & Morin, 2016; Morin et al., 2015; Pazmiño et al., 2018; Podos, 2010; Rendell, 

Mesnick, Dalebout, Burtenshaw, & Whitehead, 2012; Rocha, Craig, & Bowen, 2007; Smith & 

Friesen, 2007; Yoshino, Armstrong, Izawa, Yokoyama, & Kawata, 2008) 

 This is especially true for some cetaceans, which, despite being highly mobile, often exhibit 

high site fidelity and adaptation to local environments (Andrews et al., 2010; Bowen et al., 2016; 

Foote et al., 2016; Hamner et al., 2012; Mahaffy, Baird, McSweeney, Webster, & Schorr, 2015). 

Others have ranges that cover entire ocean basins, yet exhibit socially-driven population structure 

(Balcazar et al., 2015; Carroll et al., 2015; Rendell et al., 2012; Witteveen et al., 2011). In this 

study, we use genetic data to understand the evolutionary phylogeography and propose taxonomic 

revision of a data-deficient cetacean species, the short-finned pilot whale, in order to improve our 

ability to understand evolutionary processes within this taxonomic unit. 

Short-finned pilot whales (Globicephala macrorhynchus) are recognized as a single widely 

distributed species with a pan-tropical and pan-temperate distribution, strong social structure 

(Alves et al., 2013; Mahaffy et al., 2015; Whitehead, 1998), site fidelity (Mahaffy et al., 2015), 

and low mtDNA diversity, with widely distributed mtDNA control region haplotypes (Oremus et 

al., 2009; Van Cise et al., 2016). Two morphologically and genetically distinct types, originally 

described off Japan (Kasuya, Miyashita, & Kasamatsu, 1988; Oremus et al., 2009; Yamase, 1760), 

have largely non-overlapping distributions throughout the Pacific Ocean based on samples 

examined to date (Van Cise et al., 2016), as well as distinct vocal repertoires in tested regions (Van 
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Cise, Roch, Baird, Mooney, & Barlow, 2017). These two types, called ‘Naisa’ and ‘Shiho’ types, 

were originally described in 1760 based on morphological characteristics (Yamase, 1760). Their 

parapatric distributions around Japan remain segregated due to differing habitat preferences 

associated with thermally differentiated currents (Kasuya et al., 1988). 

The Naisa and Shiho types differ in body size, melon (and skull) shape, color pattern 

(specifically the brightness of the saddle patch), and number of teeth (Kasuya et al., 1988; 

Miyazaki & Amano, 1994; Polisini, 1980; Yonekura, Matsui, & Kasuya, 1980). Naisa-type 

individuals are the smaller of the two types (females 316-405 cm, males 422-525 cm (Chivers, 

Perryman, Lynn, West, & Brownell, 2018)), with square-shaped melons and a dark, barely visible 

saddle patch. Shiho-type individuals are larger by one-to-two meters, with rounded melons and a 

bright saddle patch.  

Based on morphological data and mtDNA control region sequences from outside Japan, 

the Shiho type has been found in the eastern Pacific Ocean from the northern to southern extent of 

the short-finned pilot whale range, while the Naisa type has been found in the central/western 

Pacific Ocean and in the Indian Ocean (Chen et al., 2014; Chivers, Perryman, Lynn, West, & 

Brownell, 2018; Oremus et al., 2009; Polisini, 1980; Van Cise et al., 2016). A single skull collected 

from Alaska indicates that the historical range of the Shiho type may have extended between the 

eastern North Pacific Ocean and northern Japan. Nuclear sequences from samples collected in 

Hawai‘i, the Mariana Islands, and the eastern tropical Pacific Ocean suggested that the two types 

may be genetically distinct in their nuclear DNA, with no male-mediated gene flow between them 

(Van Cise, Morin, Baird, Oleson, & Martien, 2016). This evidence suggests that Naisa- and Shiho-

type short-finned pilot whales may be subspecies or species, but further genetic sampling and 
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analyses from throughout the global range of the species is needed to determine the correct 

taxonomic delimitation of these two types.  

 To date, a global taxonomic study of short-finned pilot whales has been inhibited by a lack 

of samples from the Indian and Atlantic Oceans. The limited data that are published suggest that 

the distribution of the Naisa type may extend into the Indian Ocean (Van Cise et al., 2016), while 

samples from the Atlantic Ocean haven’t yet been classified. These data are insufficient to resolve 

how short-finned pilot whales from these two ocean basins are related to the two types described 

in the Pacific Ocean. In this study we examine the global phylogeography of short-finned pilot 

whales, and present a formal proposal to recognize two subspecies of short-finned pilot whale.  

 

Methods 

Sample collection and sequencing 

Samples were obtained from NOAA’s SWFSC Marine Mammal and Sea Turtle Research 

(MMASTR) Collection (n = 268) and from other contributors and collections throughout the world 

(n = 53). The majority of tissue samples were collected by dart-biopsy of free-ranging whales, 

using an 8 mm diameter biopsy dart deployed from a crossbow. All samples were collected under 

permit and according to protocol to minimize disturbance to the animals. When possible, sampling 

was limited to 1-2 individuals per encounter in order to minimize the effect of related individuals 

on population structure. Additional samples were obtained from stranded animals. Sampling 

locations are shown in Figure 1, and sample details in supplemental Table S1.  

 DNA was extracted from tissue samples using the methods described by Martien et al. 

(2014). Genomic libraries were prepared and pooled for separate capture enrichment of 
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 7 

mitogenome and nuclear SNP loci according to the methods described in Hancock-Hanser et al. 

(2013) with minor modifications. The libraries used for nuclear locus enrichment were prepared 

using 400 ng of DNA per sample, pooled in equimolar amounts prior to capture enrichment on 

capture arrays containing nuclear loci only. The nuclear SNP capture array was modified from 

Van Cise, Martien, et al. (2017) to include 54 targeted loci, rather than the original 78 targeted 

loci, based on results from capture arrays used in Van Cise, Martien, et al. (2017). Single-end 100 

bp reads were sequenced on an Illumina HiSeq500. 

  

Mitogenome assembly 

 Mitogenome sequences were assembled using custom R scripts (R Core Team, 2016) 

written at SWFSC (Dryad data repository doi:10.5061/dryad.cv35b), which call on the Burrows-

Wheeler alignment program (BWA; Li, Durban 2009). The reference sequence used to assemble 

mitogenome sequences (GenBank Accession No. JF339976) was modified at the ends to include 

40 bp from the opposite end, in order to improve coverage in these regions across the artificial 

break point in the linearized sequence.  

In most cases, nucleotides were called at a locus if there were at least 10 reads and that 

nucleotide was called in >80% of the reads, or if a locus had at least 5 reads with 100% agreement 

in nucleotide calling. Due to the possibility of  “index-hopping” during library amplification and 

by Illumina sequencers (Jun et al., 2012; Kircher, Sawyer, & Meyer, 2012), the R scripts were 

modified to include additional quality control steps. If the 80% threshold was not met, an additional 

filtering step was used to probabilistically call the nucleotide at that locus. First, we determined 

the “common” nucleotide at each locus across all samples in the dataset, which was defined as the 
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nucleotide that was represented in >50% of the samples at the locus. We also determined the “rare” 

nucleotide at each locus, or the nucleotides(s) represented in <50% of the samples at that locus. 

Next, for each locus in each sample we calculated the number of reads that matched the common 

nucleotide, and the number of reads that matched one or more rare nucleotides. The common 

nucleotide was called if the proportion of common reads at that locus in the sample (common read 

proportion, crp) was greater than the common read proportion at that locus across the entire sample 

pool (pooled common read proportion, pcrp). In other words, if crp > pcrp, the final call for that 

site went to the common nucleotide. Finally, rare nucleotides were called using a conservative, 

two-step approach that required 1) a high ratio of rare reads at that position in that sample versus 

the pooled dataset, and 2) a high binomial probability of the rare nucleotide at that site. If the 

proportion of rare nucleotide reads at that locus in the sample (rare read proportion, rrp) was 

greater than the proportion of the rare read at that site across all samples (pooled rare read 

proportion, prrp) by a ratio of at least 𝑟𝑟𝑝 = (𝑝𝑟𝑟𝑝 + 0.25)⁄1.25, then the locus in question was 

passed to the binomial probability test based on the frequency of each nucleotide at that site across 

the entire sample set. The rare read at each locus had to pass the binomial probability test with a 

binomial probability greater than 95%. If the rare nucleotide passed each of these tests at a given 

locus for a given sample, the final call for that site went to the rare nucleotide. The modified R 

script is included as Supplementary File S1. Finally, consensus sequences for each individual were 

aligned and visually inspected in Geneious (V. 7.1.5, Biomatters, Auckland, New Zealand), and 

unique variants were verified by visual comparison with the BAM files. 

 

Nuclear assembly and SNP genotyping 
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 Nuclear sequences containing 112 SNPs in 54 previously selected and quality controlled 

loci (Van Cise, Martien, et al., 2017) were assembled as in Morin et al. (2015). Sequences were 

assembled using custom scripts (Dryad data repository doi:10.5061/dryad.cv35b) and reference 

sequences previously obtained from a draft genome of the common bottlenose dolphin (Tursiops 

truncatus; assembly turTru1, Jul 2008; database version 69.1) as described elsewhere (Hancock-

Hanser et al., 2013; Van Cise et al., 2017). For each individual, SNP genotypes were called only 

if there were a minimum of 10 reads at each position, to minimize genotyping error (Fountain, 

Pauli, Reid, Palsbøll, & Peery, 2016). SNPs within the same locus were combined into multi-SNP 

genotypes using PHASE (Morin et al., 2012; Stephens & Donnelly, 2003). Phasing was based on 

allele frequencies across all samples, with a cutoff threshold of 0.5 to minimize bias against rare 

heterozygotes (Garrick, Sunnucks, & Dyer, 2010), and the MCMC was run with a burn-in of 

10,000, followed by 10,000 iterations, and thinned by 100 iterations. 

 

Data analysis: Phylogeography 

The published literature uses the terms ‘Naisa type’ and ‘Shiho type’ to refer to two groups 

identified using mitochondrial and morphological data.  Because multiple genetic datasets are used 

in this study (mitogenomes, nuclear SNPs, and control region sequences), we use specific 

nomenclature to orient the reader to the dataset being used in each analysis. When discussing 

structure derived using mitogenome sequences, we refer to mitogenomic “clades”. Similarly, when 

discussing nuclear SNP data we refer to nuclear “groups”. Finally, we combine the mitogenome 

and nuclear SNP results to form a hypothesis of phylogeographic structure within short-finned 

pilot whales based on geographically defined strata, and refer to these as “strata”, which we test 
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using control region sequences. Control region sequences are used to test strata, rather than 

mitogenomes, in order to include a larger number of samples from the geographic range of the 

species, and to allow for comparison with published guidelines on taxonomic delimitation in 

marine mammals (Taylor, Archer, et al., 2017). 

Mitogenome sequences were assigned haplotype labels using the strataG package (Archer, 

Adams, & Schneiders, 2017) implemented in the R computing environment. Tree topology was 

determined based on those haplotypes using a Bayesian maximum-clade-credibility (MCC) 

phylogenetic approach implemented in BEAST v. 1.8.4 (Drummond, Suchard, Xie, & Rambaut, 

2012), rooted using a long-finned pilot whale mitogenome as the outgroup (GenBank Accession 

#HM060334.1). We used an HKY substitution model (Hasegawa, Kishino, & Yano, 1985) with 

gamma + invariant sites, which was selected using jModelTest (Darriba, Taboada, Doallo, & 

Posada, 2012; Guindon & Gascuel, 2003) for the complete mitochondrial genome haplotype 

alignment. We used an average substitution rate of 6.24 x 10-9 substitutions/site/year, based on 

recent analyses of killer whales (Orcinus orca) (Morin et al., 2015). Low mtDNA control region 

diversity (A M Van Cise et al., 2016) indicates a shallow tree; therefore, we do not expect 

variability in the substitution rate among branches. We therefore used a strict clock with a normal 

distribution and a standard deviation of 1 x 10-7.  Finally, we used a constant-size coalescent tree 

prior (Kingman, 1982) and 10 million MCMC steps sampled every 1000 steps. Convergence of 

four replicate runs was checked using TRACER v1.6 (Rambout, Suchard, Xie, & Drummond, 

2014) and RWTY (Warren, Geneva, & Lanfear, 2017). TreeAnnotator (v1.8.1) in the BEAST 

software cluster (Drummond et al. 2012) was used to generate the maximum clade credibility tree 

after removal of the first 10% of trees. Additionally, a haplotype median joining network (MJN; 
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Bandelt et al. 1999) was generated using the program PopArt with default parameter settings 

(Leigh & Bryant, 2015).  

We examined population structure in the nuclear genotypes using STRUCTURE 

(Pritchard, Stephens, & Donnelly, 2000), implemented in R using the strataG package. We used 

settings for correlated allele frequencies, 10,000 MCMC steps with a burn-in of 1,000 steps, and a 

k-range of 1 to 6 with 5 run for each k. For each value of k, runs were combined into a single 

output using CLUMPP (Jakobsson & Rosenberg, 2007), and the optimum k value was selected by 

calculating the modal Δk using Evanno metrics (Evanno, Regnaut, & Goudet, 2005; Verity et al., 

2016). In order to ensure that strong signals did not hide more localized population structure, 

additional STRUCTURE analyses were performed within mitogenome clades and within the 

geographic regions defined in the mitogenome population structure analyses below. We further 

used strataG to calculate the number of alleles in each of the nuclear groups when K = 2 (Naisa 

and Shiho groups), as well as the proportion of private alleles in each. We also analyzed nuclear 

differentiation using a Discriminant Analysis of Principal Components (DAPC), implemented in 

R using the adegenet package (Jombart, 2008; Jombart & Ahmed, 2011).  We first ran an 

unsupervised k-means DAPC to determine the number of clusters in the data by minimizing BIC. 

We then ran a supervised DAPC, choosing the optimum number of PCs with a 10-fold cross-

validation test using a random selection of 90% of the data for training and 1,000 repetitions, to 

minimize RMSE in classification when compared with STRUCTURE classifications. 

Data analysis: Taxonomy and the subspecies hypothesis 

We tested the subspecies hypothesis by calculating divergence and diagnosibility 

according to guidelines established by Taylor et al. (2017). According to these guidelines, when 
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using mtDNA control region sequences to quantify differentiation, taxonomic categories for 

cetaceans (populations, subspecies, and species) are best characterized using Nei’s dA (subspecies: 

>0.004, species: > 0.02) and Percent Diagnosibility (PD) using a bootstrapped Random Forest 

analysis (subspecies and species: > 95%). Morphological data were not available for all samples, 

and therefore could not be used to stratify control region sequences for hypothesis testing. 

Therefore, we used the independent, unsupervised clustering of SNP data into nuclear groups to 

stratify samples into three groups, which were then tested for divergence and diagnosibility using 

control region sequences. Using control region sequences for this analysis allows us to integrate a 

larger number of samples into this test, and to compare our results with established guidelines for 

taxonomic delimitation in marine mammals. This test was conducted in two steps: in the first, only 

samples that were grouped a priori based on STRUCTURE analysis of SNP data were included 

(n = 105); in the second, all samples from the current study and previous studies for which we had 

mtDNA control region sequences (Hill et al., 2015; Martien, Hill, et al., 2014; Oremus et al., 2009; 

Van Cise et al., 2016; Van Cise et al., 2017) were included, resulting in a total of 725 samples. 

The additional samples were assigned to a type based on sampling location, corresponding with 

the STRUCTURE-derived nuclear group stratification. In order to account for the potential effect 

of social structure on pairwise estimates of divergence and diagnosibility, we subsampled the full 

control region dataset to include no more than three samples from each encounter with a group of 

pilot whales (n = 619), then re-ran these analyses and included the results in the Supplemental 

Materials. 

Molecular diversity indices were calculated for all samples, and for each stratum, for 

mitogenomes (Theta (θH), mean nucleotide diversity (π), haplotype diversity, and number of 
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haplotypes) and SNP genotypes (average number of alleles per locus, expected and observed 

heterozygosity (He, Ho)), using the strataG package in R.  

Pairwise differentiation was calculated to test the hypotheses that the STRUCTURE-

derived stratification represents distinct populations, subspecies, or species, according to 

guidelines for subspecies delimitation presented by Taylor, Archer, et al. (2017), Archer, Martien, 

et al. (2017), and Rosel et al. (2017). Because each pairwise comparison tested a unique 

hypothesis, corrections for multiple pairwise tests are inappropriate for this analysis and were 

therefore not conducted (Armstrong, 2014; Perneger, 1998). In order to compare our results with 

guidelines on subspecies and species (Taylor, Archer, et al., 2017), we extracted 345 bp of the 

mitochondrial control region sequence from all mitogenomes, and combined these with previously 

published control region sequences throughout the global distribution of short-finned pilot whales 

(Oremus et al., 2009; Van Cise et al., 2016). We estimated ΦST; net nucleotide divergence, or dA 

(Nei, 1987); and percent diagnosibility (PD) based on a random forest classification algorithm 

following Archer, Martien, et al. (2017). ΦST was calculated using a Tamura-Nei model with 

invariant sites and without a gamma correction (Tamura & Nei, 1993), which was identified by 

jModelTest2 (Darriba et al., 2012) as the substitution model that best fit the data; p-values were 

calculated based on 1,000 permutations. dA was calculated using p-distance without a correction 

factor, with pairwise deletion of sites with indels, using a bootstrap approach with 1,000 

replications. We estimated the magnitude of nuclear FST among STRUCTURE-assigned nuclear 

groups using SNP genotypes, but did not test the significance of this estimate because the nuclear 

groups are not a priori hypotheses. Mitochondrial FST was not calculated because it has been found 
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to be an unreliable indicator of taxonomic classification, exhibiting broad overlap in values among 

taxonomic classes within the order Cetartiodactyla (Rosel et al., 2017). 

 

Results 

 Full mitogenome sequences (16,390 bp) were successfully assembled for 181 samples. 

Ninety-seven unique mitogenome haplotypes were found. Sixty-two haplotypes had no unknown 

nucleotides, and all but four mitogenome sequences had 10 or fewer Ns; haplotypes mtGen13, 

mtGen80, mtGen81, mtGen89 had 21, 111, 38, and 12 Ns, respectively. Control region sequences 

were extracted from these samples and aligned to previously sequenced control regions, resulting 

in 725 control region sequences from throughout the global distribution of short-finned pilot 

whales. Genotypes from 112 SNPs were generated at 47 unique loci for 245 samples 

(Supplemental Tables S2 and S3); samples were only included if they had genotypes for at least 

70% of the 112 SNPs in the dataset. A total of 105 samples had both mitogenome sequences and 

SNP genotypes. Supplemental Figure S1 shows the number of samples in each dataset and overlap 

between datasets. 

  

Phylogeography 

Mitochondrial nucleotide diversity and number of haplotypes was greatest within the Naisa 

nuclear group and the Naisa geographic stratum, while haplotype diversity was greatest within the 

Atlantic nuclear group and Atlantic stratum (Table 1). Expected and observed heterozygosity, and 

average number of alleles, were also greatest in the Naisa nuclear group, followed by the Atlantic 

nuclear group. 
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The global phylogenetic tree (Figure 2) and mitogenome haplotype MJN (Figure 3) both 

identify four mitogenomic clades; the previously described Shiho and Naisa types are contained 

within two of those clades. Mitogenome haplotype frequencies within each clade can be seen in 

Supplemental Table S4. The Shiho clade is distinguished from the other three mitogenome clades 

by 15 substitutions (Figure 3). Shiho-clade short-finned pilot whales are primarily found in the 

eastern Pacific Ocean and northern Japan, largely separated from the Naisa clade (Figure 4a). The 

third Pacific clade has a geographic distribution that largely overlaps the Naisa clade in the Pacific 

and Indian Oceans, and is referred to as Clade 3 in this study. Clade 3 extends into the eastern 

Pacific, where it overlaps the distribution of the Shiho clade (Figure 4a). The fourth clade is found 

only in the Atlantic Ocean, and will therefore be called the Atlantic clade, although there are also 

three Atlantic Ocean sample haplotypes that were placed within the Naisa clade. Based on the 

combined BEAST analysis log files, we estimate a mean rate of 7.88 x 10-8 (95% HPD: 5.48 x 10-

10 – 2.0 x 10-7) substitutions/site/year across the entire short-finned pilot whale mitogenome, and 

the median divergence time of the Shiho clade from all other short-finned pilot whales to be 

approximately 17.5 Kya (95% HPD: 3 – 176 Kya). Posterior support for each mitogenomic clade 

are shown in Figure 2; mitogenome haplotype labels and coalescent time distributions are shown 

in Supplemental Figure S2. 

Based on ΔK (Evanno et al., 2005; Verity et al., 2016), the STRUCTURE analysis of 

nuclear SNPs indicated k = 3 as the best supported number of groups (Supplemental Figure S3), 

and differentiated Naisa, Shiho, and Atlantic nuclear groups, corresponding closely with Naisa, 

Shiho, and Atlantic mitogenome clades, but did not support the differentiation of mitogenome 

Clade 3; all but one of the Clade 3 whales grouped within the Naisa nuclear group (Figure 5a). 
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The unsupervised DAPC also returned an optimum group size of k = 3. Using 20 PCs (optimized 

by minimizing RMSE in classification), we achieved 100% classification agreement with the 

STRUCTURE analysis (Figure 5b). 

Some disparity was found between nuclear classifications and mitogenomic clades. One 

sample from the eastern tropical Pacific Ocean (ETP) had a Clade 3 mitogenome but clustered 

with the Shiho group in its nuclear DNA. Seven samples had Naisa clade mitogenomes but 

clustered with the Atlantic group in their nuclear DNA; of these, three were collected in the 

Atlantic Ocean and four were collected in the western/central Pacific and Indian Oceans. One 

sample, collected in the Bahamas, had an Atlantic clade mitogenome but clustered with the Naisa 

group in its nuclear DNA (Figure 4b). Additional STRUCTURE analyses (results not shown) did 

not indicate differentiation within the Shiho or Naisa nuclear groups, or mitogenome Clade 3. 

Based on the concordance between mitogenomic clades and nuclear groups (Figures 2 and 

4a and b), we define three distinct geographic strata within the short-finned pilot whale species 

(Figures 4a and b): an Atlantic Ocean stratum, a Naisa stratum (encompassing the western/central 

Pacific and Indian Oceans), and a Shiho stratum (occupying the eastern Pacific Ocean with a 

potentially relic population in northern Japan). Stratifying individual samples based on this 

hypothesis allows us to use geography as a proxy for genetic assignment in the absence of full 

mitogenome or nuclear SNP data, so that much larger data sets of mtDNA control region sequences 

can be used for phylogeographic and taxonomic analysis.  

 

Taxonomy and the subspecies hypothesis 
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We estimated divergence and diagnosibility among the three geographic strata using 345 

bp of the mtDNA control region, based on guidelines established to improve subspecies 

delineation using genetic data (Taylor, Archer, et al., 2017). Those guidelines suggested lower 

limits for two measures of mtDNA control region differentiation at the subspecies and species 

boundaries: dA (0.004, 0.02) and Random Forest Percent Diagnosibility, or PD (95% for both). In 

addition to these two metrics, we also report ΦST (Table 2), for which subspecies were found to 

generally fall between 0.2 and 0.6, but this measure is not recommended for use in the guidelines 

because it can result in overclassification (Rosel et al., 2017), therefore we did not use this metric 

in our taxonomic evaluation. 

We examined pairwise net divergence (dA) and PD of control region sequences for both the 

nuclear groups (N = 105) and the geographic strata (N = 725, Table 2). For the smaller data set 

based on the nuclear groups, the Naisa versus Shiho comparison met the subspecies threshold 

proposed in Taylor, Archer, et al.’s (2017) guidelines for both metrics (dA > 0.004, PD > 95%). 

The Atlantic-Shiho nuclear group comparison met the threshold for PD but not dA, while the 

Atlantic-Naisa comparison did not meet either threshold. When using the larger data set from the 

geographically defined strata, both the Naisa vs. Shiho geographic strata comparison and the 

Atlantic vs. Shiho geographic strata comparison met the subspecies thresholds for both PD and 

dA, while the Atlantic vs. Naisa geographic strata comparison met the dA threshold but not the 

PD threshold. Using a subsampled dataset to control for the potential effects of social structure did 

not appreciably change the results (Supplemental Table S5). 

Within the STRUCTURE-defined, K = 2 nuclear groups (Supplemental Figure S4), the 

Naisa/Atlantic nuclear group had 104 private alleles (50%), while the Shiho nuclear group had 7 
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private alleles (4%). In total, 54% of the alleles in the dataset were private to either the Naisa or 

Shiho nuclear group. 

Although not supported by the nuclear SNP analyses, two mitogenomic clades (Naisa and 

Clade 3; Figures 2, 3) were found in the western/central Pacific Ocean, with Clade 3 extending 

into the eastern Pacific Ocean. Using only the control region sequences, differentiation between 

these two mitogenome clades within the western/central Pacific/IO region met the threshold for 

subspecies (dA = 0.01, Table 3). We additionally examined control region differentiation between 

the eastern Pacific Ocean and the western/central Pacific/IO within Clade 3, which was the only 

clade to span multiple geographic regions, and found significant differentiation with ΦST with high 

diagnosability (96%), but net divergence did not meet the subspecies threshold. 

 

Discussion 

Phylogeography 

Our results indicate that there are at least three divergent types of short-finned pilot whales 

throughout their global distribution (Figures 2, 4, 5).  Rather than directly conforming with ocean 

basins, the three types are distributed predominantly in the Atlantic Ocean (Atlantic type), 

western/central Pacific and Indian Oceans (Naisa type), and eastern Pacific Ocean (Shiho type). 

The Shiho clade diverged earliest, approximately 17.5 Kya, corresponding with the last glacial 

maximum (~18 Kya). The Atlantic clade was the next to diverge from Naisa/Clade 3. Although 

the timing of this split had little support in the mitogenome tree (0.30), it was further supported by 

nuclear DNA, which did not support a split between the Naisa mitogenome clade and Clade 3. 
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The distributions of these three types correlate with geographic and oceanographic 

boundaries that are found among globally-distributed species (Figure 4). The Eastern Pacific 

Barrier is a known barrier to many shallow, coastally-distributed fishes, corals, and other 

invertebrates (Bowen et al., 2016; Chow et al., 2011; Rocha et al., 2007). Increasing evidence 

suggests it may also be an important barrier separating mobile trans-Pacific or globally-distributed 

species, such as Galapagos sharks (Carcharhinus galapagensis) (Pazmiño et al., 2018), tope sharks 

(Galeorhinus galeus) (Chabot, 2015), Risso’s dolphins (Grampus griseus) (Chen et al., 2018), and 

spinner dolphins (Stenella longirostris) (Leslie & Morin, 2018). Some evidence suggests that the 

barrier may be semi-permeable to some species (Lessios & Robertson, 2006), allowing occasional 

migration and mixing between the eastern and western Pacific Ocean. Similarly, the Eastern 

Pacific Barrier seems to be a semi-permeable barrier between Shiho- and Naisa-type short-finned 

pilot whales. The exact boundaries of their ranges in this area remain undefined due to lack of data, 

and it may be a region of occasional geographic overlap or temporal segregation. The species has 

been found distributed throughout this oligotrophic region (Hamilton et al., 2009), though their 

density is lower there. The concordance across taxa of isolation and divergence along the East 

Pacific Barrier indicates this barrier, although not formed by a land mass, may be as important as 

more obvious barriers in driving evolutionary processes within marine taxa. 

The Atlantic type is bordered to the west by the Isthmus of Panama, which separated the 

Atlantic Ocean from the eastern Pacific Ocean approximately 3.5 Mya (Lessios, 2008), long before 

the estimated radiation of short-finned pilot whales began. To the east, mixing between the Atlantic 

and Naisa types is limited by the cold Benguela Current on the southwest side of Africa. The long-

finned pilot whale, the sub-arctic sister species to the short-finned pilot whale, inhabits the 
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Benguela Current, while short-finned pilot whales prefer the warmer Agulhas Current, based on 

stranding records (Findlay, Best, Ross, & Cockcroft, 1992; van Bree, Best, & Ross, 1978). The 

Benguela Barrier has limited dispersal between the Atlantic and Indian Ocean species for 

approximately 2.5 My (Dwyer et al., 1995). Similar to the East Pacific Barrier, the Benguela 

Barrier is semi-permeable, preventing dispersal in temperate mobile species such as whale sharks 

(Castro et al., 2007), sailfish (Graves & McDowell, 1995) and blue marlins (Buonaccorsi, 

Mcdowell, & Graves, 2001), but permitting occasional migrations of tunas and other pelagic fishes 

(e.g. Viñas, Alvarado Bremer, & Pla, 2004). These occasional dispersal events are likely driven 

by southward incursions of the warm Agulhas Current from the southeast, providing a potential 

warm-water route for sporadic gene flow between the Atlantic Ocean and western/central Pacific 

and Indian Oceans (Hutchings et al., 2009). In most species, mixing tends to be unidirectional, 

following the prevailing current westward from the Indian to the Atlantic Ocean (Bowen et al., 

2016). Large, globally distributed whales also exhibit restricted gene flow between ocean basins, 

although they are not restricted to tropical or temperate waters (e.g. Baker et al., 1993).  

The Indo-Pacific Barrier is a common barrier for many tropical and coastally-distributed 

species (Bowen et al., 2016), but our data do not show that this is a barrier to gene flow in short-

finned pilot whales. It is possible, rather, that the complicated bathymetry in the region provides a 

rich prey base and habitat for short-finned pilot whales, which are often found along shelf breaks 

and slopes where they are thought to hunt deep water squid species. Similarly, we found no 

evidence of differentiation across the equatorial tropics.  

There is evidence of limited historical or continued gene flow between the Atlantic and 

Naisa types, as well as the Naisa and Shiho types (Figures 2, 5). Our data support the migration of 
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males and females from the Pacific or Indian Oceans to the Atlantic Ocean; it is possible that males 

and females migrated separately, but due to their social nature it is likely these animals migrated 

as social units across the Benguela Barrier. We also found evidence for male migration in the other 

direction, from the Atlantic Ocean to the western/central Pacific and Indian Oceans. Finally, we 

found evidence of female migration from the western/central Pacific and Indian Oceans to the 

eastern Pacific Ocean. Although these samples suggest the potential for historical or ongoing gene 

flow across barriers, it is important to note that there are several artifacts that might affect genetic 

clustering. We were able to rule out missing SNPs, high homozygosity, or large numbers of 

unknown mitogenome nucleotides as potential drivers of non-geographic clustering among 

samples. Genotype errors may also be caused by potential cross-contamination among samples 

sequenced in the same lane (Jun et al., 2012), miscalled genotypes, errors introduced during the 

phasing of genotypes into haplotypes, or errors introduced by the STRUCTURE algorithm (e.g., 

violation of model assumptions). Because the number of samples indicating gene flow between 

these types is small, we caution against drawing specific conclusions about gene flow among 

geographic regions without additional sampling. 

Mitogenome Clade 3 was not supported in the nuclear DNA (Table 3 and Figure 5), and 

its distribution overlaps the Naisa clade throughout its range. In the Mariana Islands, Clade 3 and 

Naisa individuals have been found in the same social groups (Hill et al., 2018). Within Clade 3, 

the eastern Pacific Ocean regions and western/central Pacific and Indian Oceans regions were 

significantly differentiated, mimicking the patterns seen in the Naisa and Shiho types. These 

patterns could be caused by historically divergent clades with recent mixing or by lineage sorting 
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within a widely distributed population, and may be better understood with additional nuclear and 

morphological data from Clade 3.  

Genetic phylogeography has often been based on mitochondrial (mtDNA) control region 

diversity. Yet this single locus can, under certain conditions (e.g. low genetic diversity, large 

effective population size), misrepresent underlying patterns of isolation, divergence or speciation. 

Low mtDNA diversity may arise for a number of reasons, including recent population bottlenecks 

(Hoelzel, Fleischer, Campagna, Alvord, & Le Boeuf, 2002; Morin et al., 2018; Weber, Stewart, & 

Lehman, 2004), variation in mutation rates across the mitogenome (Aris-Brosou & Excoffier, 

1996; Nabholz, Glémin, & Galtier, 2009; Nabholz, Glémin, Galtier, Glemin, & Galtier, 2008), or 

selection on mtDNA (e.g. Foote et al. 2011; Finch et al. 2014). In some social species, low mtDNA 

diversity may be caused by cultural hitchhiking, a phenomenon in which mtDNA variation 

changes through selection on maternally-transmitted cultural traits (Whitehead, 1998). Due to low 

mtDNA diversity in short-finned pilot whales, the use of additional lines of data (mitogenomes 

and SNPs) has improved our understanding of phylogeographic patterns and evolutionary 

divergence within the species. 

 

Taxonomy and the subspecies hypothesis  

 Following the guidelines for subspecies delineation summarized in Figure 3 of Taylor et 

al. (2017a), we find support for two subspecies: a Shiho subspecies in the eastern Pacific Ocean, 

and a Naisa subspecies encompassing the central/western Pacific and Indian Oceans as well as the 

Atlantic Ocean. We propose a nominate subspecies, Globicephala macrorhynchus 

macrorhynchus, with the common name “Naisa short-finned pilot whale” (currently called “ma-

480 

481 

482 

483 

484 

485 

486 

487 

488 

489 

490 

491 

492 

493 

494 

495 

496 

497 

498 

499 

500 

501 



 23 

gondo” in Japan), distributed throughout the central/western Pacific, Indian, and Atlantic Oceans, 

and an unnamed subspecies with the common name “Shiho short-finned pilot whale” (currently 

“tappa-naga” in Japan), found in the eastern Pacific Ocean and northern Japan (Supplemental 

Figure S5). See the Supplemental Materials for further considerations of the proposed common 

names. The holotype for Globicephala macrorhynchus macrorhynchus would be that previously 

designated for Globicephala macrorhynchus.  

We recommend the unnamed subspecies be designated according to one of the previously 

synonymized names for Globicephala macrorhynchus (see Supplemental Materials for further 

consideration). Globicephala scammonii (Cope, 1869) is likely to be the earliest taxonomic 

designation for this subspecies, based on morphology and sample location, but this should be 

confirmed through genetic sequencing. We recommend that the holotypes for G. macrorhynchus 

(U.K. Natural History Museum, Accession #1846.8.9.2), G. scammonii (U.S. Natural History 

Museum, Accession #USNM A 9074), and G. sieboldii (Naturalis Biodiversity Centre, Accession 

#RMNH.MAM.21648) be sequenced and compared with the Shiho and Naisa subspecies to 

resolve their taxonomic nomenclature. 

 There are two known regions of potential sympatry and/or introgression between the two 

subspecies: coastal Japan and the eastern tropical Pacific Ocean. Off the coast of Japan, the two 

subspecies are spatio-temporally and ecologically isolated, with the Naisa subspecies using the 

warmer Kuroshio Current and the Shiho subspecies using the colder Oyashio Current (Kasuya et 

al., 1988).  Less information is available from the eastern tropical Pacific Ocean. Because of this, 

we tested mitochondrial control region differentiation between the Naisa and Shiho geographic 

strata in two ways – we first stratified Clade 3 samples according to geography, to test the 
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hypothesis of geographically-separated subspecies with some degree of admixture (Table 2). 

Second, we stratified the Clade 3 samples with the Naisa samples according to their mitogenomic 

classification, to test the hypothesis of genetically-differentiated subspecies with an area of 

sympatric distribution in the ETP and no genetic exchange (Supplemental Table S6). Both 

stratification schemes support subspecies delimitation. 

In addition to control region support, our analysis of nuclear SNPs independently clustered 

samples into Naisa and Shiho groups. The high proportion of private alleles (54%) indicates that 

contemporary gene flow between the two strata is very low, or possibly zero (Slatkin, 1985). 

Although this analysis is representative of the global range of short-finned pilot whales, there are 

geographic areas where sampling is scant or missing, such as the southern Atlantic Ocean, pelagic 

Indian Ocean, and the eastern central Pacific Ocean area of potential sympatry.  

Additional data from other studies further support this recommendation. Morphological 

data collected off the coast of Japan show that the Shiho and Naisa types differ in skull shape, 

body length, and color pattern (Kasuya, 2017; Kasuya et al., 1988; Miyazaki & Amano, 1994). 

Skull size (length and width) may be considered a diagnostic difference between the two types 

(Kasuya, 2017; Miyazaki & Amano, 1994), but the limited sample size and geographic coverage 

outside Japan (e.g. Polisini, 1980) prohibit the use of this trait for taxonomic analysis. There is a 

considerably greater sample size for body length measurements, expanding the range of 

geographic coverage to include Hawai‘i and the eastern tropical Pacific Ocean (Chivers et al., 

2018). However, there is some overlap between the two types in the range of body length 

measurements; therefore body length cannot be considered a diagnostic trait (e.g. Cracraft, 1983; 

Helbig et al., 2002; Sites and Marshall, 2004; De Queiroz, 2007). However, length measurements 
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do indicate a high level of concordance in geographic distribution between morphologically 

recognized forms and mitochondrial haplotypes (Chivers et al., 2018; Oremus et al., 2009; Polisini, 

1980; Van Cise et al., 2016). Where genetic samples have been sequenced from individuals of 

known morphological form (Japan, Hawai‘i, and the eastern Pacific Ocean), concordance is 100% 

between the two (Oremus et al., 2009; Van Cise et al., 2016). 

Finally, a few localized studies indicate the potential for additional differences between the 

two proposed subspecies. Where the two subspecies have allopatric distributions off the coast of 

Japan, there are differences in their life-history parameters, such as peak mating season (Kasuya, 

2017). Similarly, a study of vocal repertoires in the eastern Pacific Shiho subspecies and the Naisa 

subspecies found in Hawai‘i indicated acoustic differentiation between the two (Van Cise et al., 

2017). 

A conservative taxonomic approach requires additional data, particularly from regions of 

sympatry, supporting complete diagnosibility of the two subspecies in order to classify them as 

distinct species. Although we adhere to this conservative approach to species delimitation within 

this study, it is important to remember the risk involved in the under-classification of taxonomic 

units, especially with regard to conservation implications, as well as our scientific understanding 

of basic biological and evolutionary processes (Bowen et al., 2016; Daugherty, Cree, Hay, & 

Thompson, 1990; Leslie, 2015; Mace, 2004). In the case of short-finned pilot whales, and many 

other cetaceans, the difficulty in obtaining a sufficient dataset of morphological or genetic samples 

covering the entire range of the species may perpetuate taxonomic under-classification, with 

consequences that range from failing to properly characterize the evolutionary trajectory within a 

specific taxon or failing to detect recent speciation events, to the extinction of under-classified 
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species and loss of the associated evolutionary potential of that species (Allendorf & Luikart, 2011; 

Daugherty et al., 1990; Taylor, Perrin, et al., 2017; Wang, Frasier, Yang, & White, 2008). It is 

therefore our responsibility to consider, as we characterize and classify diversity, the potential for 

under- or over-classification of certain taxa due to logistical or biological constraints, as well as 

the trade-offs and consequences that may occur if our classification is not correct. In the case of 

Naisa and Shiho short-finned pilot whales, we recommend that priority be given to generating 

nuclear sequence data from areas of potential sympatry or introgression (i.e. coastal Japan and the 

eastern tropical Pacific Ocean, see Figure 4), which can be used to assess gene flow and migration 

between the two taxa and determine whether there is support to formally elevate these two 

subspecies to species. Alternative methods for collecting morphological data, for example using 

drone photography to determine body length or melon shape, should also be explored. 

Within the Naisa subspecies, two populations in the Atlantic Ocean and central/western 

Pacific and Indian Oceans may also be sufficiently distinct to be considered subspecies with further 

sampling. We suggest that delimitation of an Atlantic Ocean subspecies would require additional 

mitogenomic and nuclear data, or expanded morphological analyses, from the Atlantic and Indian 

Oceans. 
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Table 1. Molecular diversity indices for mitogenomes, mtDNA control region (345 bp), and nDNA 
SNP (n=47) datasets. The SNP dataset includes 112 SNPs at 47 unique loci. N = mtDNA and SNP 
sample size, θH  = Theta, π = nucleotide diversity, Ho = observed heterozygosity, He = expected 
heterozygosity. 

939 
940 
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 943 

Stratum N 

Mitogenome sequences 

 θH π Haplotype 
Diversity 

No. 
Haplotypes 

Ave. num 
alleles Ho He 

       
All samples 181 0.73 0.002 0.98 97 - - - 
Naisa clade 77 0.69 0.0008 0.92 35 - - - 
Shiho clade 43 0.68 0.0003 0.91 26 - - - 
Clade 3 36 0.71 0.0005 0.96 22 - - - 
Atlantic clade 25 0.69 0.0007 0.92 14 - - - 
         
Control Region sequences        
STRUCTURE-derived nuclear group samples only 
All samples 105 0.69 0.007 0.93 46 4.4 0.40 0.46 
Naisa group 69 0.66 0.007 0.88 28 4.1 0.43 0.45 
Shiho group 14 0.38 0.002 0.51 5 2.2 0.27 0.27 
Atlantic group 22 0.72 0.003 0.97 17 2.7 0.36 0.37 
Proposed type 
All samples 725 0.62 0.008 0.83 64 - - - 
Naisa type 485 0.54 0.006 0.72 38 - - - 
Shiho type 190 0.28 0.002 0.38 13 - - - 
Atlantic  type 50 0.60 0.002 .081 17 - - - 
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Table 2. Estimates of pairwise genetic differentiation between STRUCTURE-derived nuclear 
groups and geographically-defined hypothesized types. mtDNA control region differentiation was 
estimated using ΦST, net divergence (dA), and percent diagnosibility (PD). The magnitude of 
nuclear SNP differentiation was estimated using FST. Sample sizes for each stratum are shown in 
parentheses. Significant P-values are shown in bold. The lower bounds of the subspecies threshold 
for dA and PD are 0.004 and 95%, respectively. The lower bounds of the species threshold for dA 
and PD are 0.02, and 95%, respectively. 

945 
946 
947 
948 
949 
950 
951 

 952 
Stratum FST ΦST ΦST P- dA dA  PD 

value 95% CI 
Control region sequences     
STRUCTURE-derived nuclear group samples only    
Naisa (69) vs. Shiho (22) - 0.32 <0.001 0.004 0.003-0.005 98.75% 
Atlantic (14) vs. Shiho (22) - 0.10 0.04 0.003 0.002-0.003 96.6% 
Atlantic (14) vs. Naisa (69) - -0.01 0.47 0.002 0.001-0.003 73.17% 
Proposed type      
Naisa (485) vs. Shiho (190) - 0.46 <0.001 0.006 0.005 – 0.006 97.9% 
Atlantic (50) vs. Shiho (190) - 0.31 <0.001 0.004 0.003-0.004 99.2% 
Atlantic (50) vs. Naisa (485) - 0.15 <0.001 0.005 0.004-0.005 82.3% 
       
SNPs       
STRUCTURE-derived nuclear group samples only    
Naisa (69) vs. Shiho (14) 0.3 - - - - - 
Atlantic (22) vs. Shiho (14) 0.4 - - - - - 
Atlantic (22) vs. Naisa (69) 0.1 - - - - - 
 953 
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Table 3. Estimates of pairwise genetic differentiation among mitogenomic clades within 
geographic regions with multiple clades, and vice versa. The magnitude of SNP differentiation 
was estimated using FST. Mitochondrial control region differentiation was estimated using ΦST, 
Nei’s dA, and PD. IO = Indian Ocean. Sample sizes for each stratum are shown in parentheses. 
Significant values are shown in bold. SNP comparisons with Clade 3 in the eastern Pacific could 
not be conducted due to small sample size within that region (n=2). 
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 962 

Strata FST ΦST ΦST  dA dA  PD 

Control region sequences 
P-value 95% CI 

      
Clades w/in Geographic Regions       
W. Pacific/IO: Naisa (398) vs. Clade 3 (62) - 0.03 0.020 0.010 0.009-0.011 99.3% 
E. Pacific: Shiho (172) vs. Clade 3 (17) - 0.84 <0.001 0.006 0.006-0.006 99.5% 
Regions w/in Clades       
Clade 3: E. Pacific (17) vs. W. Pacific/Indian - 0.73 <0.001 0.002 0.002-0.003 96.0% 
Ocean (62) 
       
SNPs       
Clades w/in Geographic Regions  - - - - - 
W. Pacific/Indian Ocean: Naisa (52) vs. Clade 3 0.008 - - - - - 
(19) 
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Figure 1. Global sampling locations of samples used to generate mitogenome and SNP sequences 
used in this study. The shaded region indicates the general global distribution of short-finned pilot 
whales. A detailed map of sample distribution can be found in Supplemental Figure S6. 
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Figure 2. BEAST phylogenetic tree of mitogenome data, rooted with G. melas, showing four 
distinct clades. The x-axis is Kya. The posterior probability of each branch is shown above the 
branch, on a scale from 0 to 1. Each branch represents a mitogenome haplotype, which may be 
shared by multiple individuals. Mitogenome haplotype labels can be seen in Supplemental Figure 
S2, and mitogenome haplotype frequencies can be found in Supplemental Table S4. The vertical 
bar on the far right shows the ocean basin where each haplotype was found.  
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Figure 3. Median joining network (MJN) displaying the relationships among whole mitogenome 
haplotypes by ocean basin and mitogenomic clades. Circles are proportional in size to the number 
of samples with each haplotype. Cross hatches on lines indicate the number of differences between 
haplotypes. Missing haplotypes are indicated by a black node. 
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Figure 4. Distributions of A) four mitogenomic clades (black points represent samples for which 
we have control region samples but no mitogenome or SNP data), and B) three nuclear groups 
(open shapes represent samples for which we have mitogenome but no nuclear data). Two 
samples in panel B, outlined in red, are the only eastern Pacific Clade 3 samples with nuclear 
DNA; one grouped with Naisa, and the other grouped with Shiho. Colored areas in each panel 
encompass regions of general geographic concordance between the mitogenome and nuclear 
datasets, which were used to stratify samples into three regions for the estimation of divergence 
and differentiation among the three hypothesized types. Grey areas show regions of possible 
sympatry, or regions of recent or historic introgression between types. 
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Figure 5. A) Assignment plot based on STRUCTURE analyses, with k = 3. Mitogenome clade 
stratification is on the x axis, and probability of assignment is on the y axis. B) Supervised 
Discriminant Analysis of Principal Components, colored according to the nuclear groups defined 
in the STRUCTURE analysis in Figure 5A. 

997 
998 
999 

1000 

 

 

1001 

1002 


	Oceanographic barriers, divergence, and admixture: Phylogeography and taxonomy of two putative subspecies of short-finned pilot whale
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Acknowledgements
	References
	Data Accessibility
	Tables
	Figures

